MAT241 Analytic Geometry and Calculus III

Course Description: Multivariable calculus including vectors, vector-valued functions, partial differentiation, multiple integration, and an introduction to vector fields.

Prerequisite: MAT231 Analytic Geometry and Calculus II

Learning Outcomes and Standards: Upon completion of the course the student will be able to:

1. (Analysis Level) Examine the use of vectors in plane and in three-dimensional space.

 Example 1. Consider a 100-N weight suspended by two wires as shown. Find the magnitude and components of the force vectors \(\mathbf{F}_1 \) and \(\mathbf{F}_2 \).

 ![Diagram of Example 1]

 Example 2. Use the vector cross product to find the equation of the plane shown below.

 ![Diagram of Example 2]
2. (Analysis Level) Describe and compare the motion of an object on a plane or space curve.

Example 1. A projectile is fired from an initial height of 10 meters with speed of 400 m/sec at an angle of 45°. Determine the maximum height and the range of the projectile.

Example 2. Determine the tangential and normal component of acceleration for the object whose position is given by
\[\mathbf{r}(t) = 4t \mathbf{i} + (\cos 2t) \mathbf{j} + (\sin 2t) \mathbf{k}. \]

3. (Analysis Level) Analyze the graphs of multivariable functions.

Example 1. Use the second derivative test to find all local maxima, minima, and saddle points of
\[f(x, y) = x^3 - y^3 - 2xy + 3. \]

Example 2. For the function
\[f(x, y) = e^{xy} \sin y, \]
find the direction of maximum increase of \(f \) at the point (1,0). What is the maximum value of the directional derivative of \(f \) at the point (1,0)?

4. (Application Level) Solve real-world applications using multivariable derivative.

Example 1. A box is to have a volume of 125 in\(^3\). Find the dimensions of the box of the smallest surface area.

Example 2. The radius of a right circular cylinder is increasing at a rate of 4 inches per minute, and the height is increasing at a rate of 5 inches per minute. What is the rate of change of the volume when the radius is 8 inches and the height is 10 inches?
5. **(Evaluation Level)** Select multiple integrals to find characteristic attributes of multidimensional solids.

Example 1. Find the volume of the solid bounded by the paraboloid

\[z = 4 - x^2 - y^2 \]

and the \(xy \)-plane.

Example 2. Find the mass of the solid below with variable density, \(\delta(x, y, z) = 2x \).

![Diagram]

6. **(Evaluation Level)** Interpret line and surface integrals.

Example 1. Find the work done by the force field \(\mathbf{F} \) on a particle moving along the given path.

\[
\mathbf{F}(x, y) = y^2 \mathbf{i} + x^2 \mathbf{j}
\]

\(C : x = t, y = t^3 \) from (0,0) to (1,1)

Example 2. Use Green’s Theorem to find the area of the region enclosed the ellipse

\[
\mathbf{r}(t) = (\cos t) \mathbf{i} + (2 \sin t) \mathbf{j}.
\]
7. (Synthesis Level) Incorporate technology to support problem solving processes.

Example 1. Identify and sketch each surface in space. Check by plotting using technology.

a) \[x^2 + z^2 = 4 \]

b) \[z = 9 - x^2 - y^2 \]

c) \[x^2 - y^2 + z^2 = 1 \]

Example 2. Find an equation of the plane that is tangent to the given surface at the given point. Check by plotting the surface and the tangent plane using technology.

\[z = 4x^2 + y^2 \]

at the point (1,1,5)